

Unit for step/contact and earth resistance measurement

Pag 1 of

1. ELECTRICAL SPECIFICATIONS

Accuracy is calculated as \pm [% readings + (number of dgt * resolution)] at reference conditions

Step/Contact voltage measurements (unit HT2055M)			
Measure voltage range	Resolution	Accuracy	
0.01 ÷ 19.99mV	0.01mV		
20.0 ÷ 199.9mV	0.1mV		
200 ÷ 1999mV	1mV	±(2.0% rdg + 2dgt)	
2.00 ÷ 19.99V	0.01V		
20.0 ÷ 59.9V	0.1V		

Calculated voltage range	Resolution	Accuracy
0.0 ÷ 199.9V	0.1V	
200 ÷ 999V	1V	Calculated value (*)
1.00kV ÷ 9.99kV	10V	

(*) The calculated value of step/contact voltage is obtained by the relationship: U_S=Umeas IfIt/Igen U_C=Umeas IfIt/Igen

Range of fault current (selectable): $1A \div 200kA$ Input resistance(selectable): $1k\Omega, \ 1M\Omega$

Noise reducing/erasing: DSP filtering 55Hz, 64dB rejection on noise at 50/60Hz

Earth resistance measurement (unit HT2055S)			
Measurement range	Resolution	Accuracy	
$0.001\Omega \div 1.999\Omega$	0.001Ω		
$2.00\Omega \div 19.99\Omega$	0.01Ω	\pm (2.0% rdg + 5 dgt)	
$20.0\Omega \div 99.9\Omega$	0.1Ω		
$100.0\Omega \div 199.9\Omega$		±(5.0% rdg)	

Open voltage: < 50V AC
Test current: < 7.5A
Frequency of test signal: 55Hz

Influence of probe resistance: $\leq \pm (10\% \text{ rdg} + 10 \text{ dgt})$

 $(\text{Rc, Rp}) \text{max} \qquad \qquad (\text{10}\Omega + \text{100R}) \text{ o 2k}\Omega \text{ considering the lower value}$

Automatic test on the probe resistance: Yes

Automatic detection of voltage noise

Generated current range	Resolution	Accuracy
0.00 ÷ 9.99A	0.01A	\pm (3.0% rdg + 5 dgt)
10.0 ÷ 99.9A	0.1A	\pm (3.0% rdg + 3 dgt)

Generated current: 55A max
Test voltage: <55V
Test frequency: 55Hz

Soli resistivity measurement (unit HT2055S)			
Measurement range	Resolution	Accuracy	
$0.00\Omega \text{m} \div 9.99\Omega \text{m}$	0.01Ωm		
$10.0\Omega \text{m} \div 99.9\Omega \text{m}$	0.1Ωm	Calculated value, consider accuracy of Resistance to earth function	
100Ω m ÷ 999Ω m	1Ωm		
1.00kΩm ÷ 9.99 kΩm	$0.01 \mathrm{k}\Omega\mathrm{m}$		
10.0kΩm ÷ 99.9 kΩm	0.1kΩm		

Measurement principle: Wenner method $\rightarrow \rho = 2^*\pi^*$ distance* R

Unit for step/contact and earth resistance measurement

Pag 2 of

Rel. 2.00 of 08/07/24

2. GENERAL SPECIFICATIONS

Power unit (HT2055S)

Power supply: 115V/230VAC (±10%), 50/60Hz

Max. power consumption: 750VA

Protection on power supply: fuse T 5A / 250V (6mm x 30mm)
Safety condition on meter: IEC/EN61010-1, IEC/EN61557-1

Safety condition on test leads: IEC/EN61010-031

Installation over 1kVAC: HD 637 S1

Step/Contact voltage measurement: EN50522, IEC60936-1

Earth resistance measurements: IEC/EN61557-5, IEC/EN60364

Spanish guideline: RAT 2008 Insulation: class I

Measurement category: CAT II 300V, CAT IV 50V

Pollution degree: 3
Mechanical protection: IP30

Display: LCD dot matrix (128 x 64) with backlight

Internal memory: 1000 locations

Generated current: values storage for min 24h
Comunication interface: RS-232 (with voltmetric unit)

Dimensions (L x W x H): 563 x 257 x 275mm

Weight (without accessories): 29.5kg

Voltmetric unit (HT2055M)

Power supply: 6x1.2V rechargeable batteries NiMH type AA LR03

6x1.5V alkaline batteries type AA LR03

Battery (chargeable) life: 12 hours (typical)

External power supply: 100-240V AC, 50-60Hz / 12V DC

Safety condition on meter: IEC/EN61010-1
Safety condition on test leads: IEC/EN61010-031
Insulation: double insulation
Measurement category: CAT IV 50V

Pollution degree: 2
Mechanical protection: IP40

Display: LCD dot matrix (128 x 64) with backlight Auto Power OFF: after 15 minutes of idleness (not disable)

Internal memory: 1500 locations

Comunication interface: RS-232 and USB (to PC)
Dimensions (LxLaxH): 230 x 115 x 103mm

Weight (with batteries): 1.3kg

ENVIRONMENTAL CONDITIONS:

This instrument satisfies the requirements of Low Voltage Directive 2014/35/EU (LVD) and of EMC Directive 2014/30/EU

This instrument satisfies the requirements of 2011/65/EU (RoHS) directive and 2012/19/EU (WEEE) directive

